Polar amplification comparison among Earth’s three poles under different socioeconomic scenarios from CMIP6 surface air temperature

  • Qiu, J. China: The third pole. Nature 454, 393–396 (2008).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  • Gao, K. L., Duan, A., Chen, D. L. & Wu, G. X. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades. Sci. Bull. 64, 1140–1143 (2019).

    Article  Google Scholar 

  • Li, X. et al. CASEarth Poles: Big Data for the Three Poles. Bull. Am. Meteorol. Soc. 101, 1475–1491 (2020).

    Article  Google Scholar 

  • Zheng, G. et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Chang. 11, 411–417 (2021).

    ADS  Article  Google Scholar 

  • Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    ADS  CAS  Article  Google Scholar 

  • Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas, A. Mackintosh, J. Melbourne-Thomas, M.M.C. Muelbert, G. Ottersen, H. Pritchard, and E.A.G. Schuur, 2019: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

  • Dai, A. G., Luo, D. H., Song, M. R. & Liu, J. P. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • Peng, X. Q., Zhang, T. J., Frauenfeld, O. W., Du, R., Jin H. D. & Mu C. C. A Holistic assessment of 1979–2016 Global Cryospheric Extent. Earth’s Future 9, e2020EF001969 (2021).

  • Hofer, S. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat. Commun. 11, 6289 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.). Cambridge University Press. In Press

  • Chen, J. L., Kang, S. C., Meng, X. H. & You, Q. L. Assessments of the Arctic amplification and the changes in the Arctic sea surface. Adv. Clim. Chang 4, 193–202 (2019).

    Article  Google Scholar 

  • Screen, J. A. & Simmonds, I. The central role of diminishing sea-ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Bromwich, D. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).

    ADS  CAS  Article  Google Scholar 

  • Sato, K., Inoue, J., Simmonds, I. & Rudeva, I. Antarctic Peninsula warm winters influenced by Tasman Sea temperatures. Nat. Commun. 12, 1497 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Clem, K. R., Renwick, J. A. & Mcgregor, J. Autumn cooling of Western East Antarctica linked to the Tropical Pacific. J. Geophys. Res. Atmos. 123, 89–107 (2018).

    ADS  Article  Google Scholar 

  • Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87–101 (2014).

    CAS  Article  Google Scholar 

  • Cai, S. L., Hsu, P. C. & Liu, F. Changes in polar amplification in response to increasing warming in CMIP6. Atmos. Oceanic Sci. Lett. 14, 100043 (2021).

    Article  Google Scholar 

  • You, Q. L. et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth Sci Rev 217, 103625 (2021).

    Article  Google Scholar 

  • Duan, J. P., Li, L., Chen, L. & Zhang, H. Time-dependent warming amplification over the Tibetan Plateau during the past few decades. Atmos. Sci. Lett. 21, e998 (2020).

    Article  Google Scholar 

  • Fyke, J., Eby, M., Mackintosh, A. & Weaver, A. Impact of climate sensitivity and polar amplification on projections of Greenland Ice Sheet loss. Clim. Dyn. 43, 2249–2260 (2014).

    Article  Google Scholar 

  • Bustos Usta, D. F. & Torres Parra, R. R. Ocean and atmosphere changes in the Caribbean Sea during the twenty-first century using CMIP5 models. Ocean Dyn 71, 757–777 (2021).

    ADS  Article  Google Scholar 

  • Hahn, L., Armour, K., Battisti, D., Donohoe, A., Pauling, A. G. & Bitz, C. Antarctic elevation drives hemispheric asymmetry in polar lapse rate climatology and feedback. Geophys. Res. Lett. 47, e2020GL088965 (2020).

  • Stuecker, M. F. et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 8, 1076–1081 (2018).

    ADS  CAS  Article  Google Scholar 

  • Pithan, F. & Mauritsen, T. Arctic amplifcation dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    ADS  CAS  Article  Google Scholar 

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9, 1937–1958 (2016).

    ADS  Article  Google Scholar 

  • Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 10, 7–10 (2020).

    ADS  Article  Google Scholar 

  • O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  • Roussel, M. L., Lemonnier, F., Genthon, C. & Krinner, G. Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. Cryosphere 14, 2715–2727 (2020).

    ADS  Article  Google Scholar 

  • Yao, T. D. Changes and countermeasures of pan third pole environment. Bull. Chin. Acad. Sci. 33, 44–46 (2018).

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  • Graham, R. M., Hudson, S. R. & Maturilli, M. Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett. 46, 6138–6147 (2019).

    ADS  Article  Google Scholar 

  • Zhu, J. P., Xie, A. H., Qin, X., Wang, Y. T. & Wang, Y. C. An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere 12, 217 (2021).

    ADS  Article  Google Scholar 

  • Han, Y. et al. Analysis of wind-speed profiles and optical turbulence above Gaomeigu and the tibetan plateau using ERA5 data. Mon. Not R. Astron. Soc. 4, 4692–4702 (2021).

    ADS  Article  Google Scholar 

  • Wilks, D. Statistical methods in the atmospheric sciences. Academic Press, 2006.

  • Barnes, E. A. & Polvani, L. M. CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Clim. 28, 5254–5271 (2015).

    ADS  Article  Google Scholar 

  • You, Q. L. et al. Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Glob. Planet Change 192, 103261 (2020).

    Article  Google Scholar 

  • UNFCCC. Adoption of the Paris Agreement. 1–32Paris (2015).

  • Donnelly, C. et al. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 143, 13–26 (2017).

    Article  Google Scholar 

  • King, A., Karoly, D. & Henley, B. Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat. Clim. Chang. 7, 412–416 (2017).

    ADS  Article  Google Scholar 

  • Hu, X. M., Ma, J. R., Ying, J., Cai, M. & Kong, Y. Q. Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations. Adv. Clim. Change Res. 12, 499–507 (2021).

    Article  Google Scholar 

  • Sonali, P. & Nagesh Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J Hydrol 476, 212–227 (2013).

    Article  Google Scholar 

  • Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).

    ADS  Article  Google Scholar 

  • Mahlstein, I. & Knutti, R. Ocean heat transport as a cause for model uncertainty in projected Arctic Warming. J. Clim. 24, 1451–1460 (2011).

    ADS  Article  Google Scholar 

  • Sledd, A. & L’Ecuyer, T. Uncertainty in forced and natural Arctic solar absorption variations in CMIP6 models. J. Clim. 34, 1–53 (2020).

    Google Scholar 

  • Roach, L. A. et al. Antarctic Sea Ice area in CMIP6. Geophys. Res. Lett. 47, 086729 (2020).

    Article  Google Scholar 

  • Shu, Q. et al. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophys. Res. Lett. 47, 2020GL087965 (2020).

  • Gao, M. N. et al. Historical fidelity and future change of Amundsen Sea Low under 1.5°C-4°C global warming in CMIP6. Atmos Res 255, 105533 (2021).

    Article  Google Scholar 

  • Zhu, Y. & Yang, S. N. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang 11, 239–251 (2020).

    Article  Google Scholar 

  • Lun, Y. R., Cheng, L., Li, X. P., Li, H. & Xu, Z. X. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 41, 7055 (2021).

    Article  Google Scholar 

  • Wang, M. R. et al. Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. Environ. Res. Lett. 14, 124066 (2019).

    ADS  Article  Google Scholar 

  • Casagrande, F., Neto, F. A. B., de Souza, R. B. & Nobre, P. Polar amplification and ice free conditions under 1.5, 2 and 3 °C of global warming as simulated by CMIP5 and CMIP6 models. Atmosphere 12, 1494 (2021).

    ADS  CAS  Article  Google Scholar 

  • You, Q. L., Zhang, Y. Q., Xie, X. & Wu, F. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °C. Clim. Dyn. 53, 2047–2060 (2019).

    Article  Google Scholar 

  • Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim Dyn 40, 2719–2743 (2013).

    Article  Google Scholar 

  • Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, 2012GL051000 (2012).

  • Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 10, 20–29 (2020).

    ADS  Article  Google Scholar 

  • Pithan, F. et al. Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805–812 (2018).

    ADS  CAS  Article  Google Scholar 

  • Laîné, A., Yoshimori, M. & Abe-Ouchi, A. Surface Arctic amplification factors in CMIP5 models: Land and oceanic surfaces and seasonality. J. Clim. 29, 3297–3316 (2016).

    ADS  Article  Google Scholar 

  • Boeke, R. C. & Taylor, P. C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming. Nat. Commun. 9, 5017 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • Chemke, R., Polvani, L. M., Kay, J. E. & Orbe, C. Quantifying the role of ocean coupling in Arctic amplification and sea-ice loss over the 21st century. NPJ Clim. Atmos. Sci. 4, 46 (2021).

    Article  Google Scholar 

  • Bracegirdle, T. J. et al. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 21, e984 (2020).

    Article  Google Scholar 

  • Fogwill, C. J. et al. Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: Past changes and future implications. J Quat Sci 29, 2683 (2014).

    Article  Google Scholar 

  • Gulick, S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Saurral, R. I., Raggio, G. A. & Gulizia, C. N. How could a difference of 0.5°C in global warming modify the mean and extreme climate conditions around Antarctica?. Int. J. Climatol. 40, 6566 (2020).

    Article  Google Scholar 

  • Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci. 9, 725 (2021).

    ADS  Article  Google Scholar 

  • Singh, H. A. & Polvani, L. M. Low Antarctic continental climate sensitivity due to high ice sheet orography. NPJ Clim. Atmos. Sci. 3, 39 (2020).

    CAS  Article  Google Scholar 

  • Chen, D. L. et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 60, 3025–3035 (2015).

    Google Scholar 

  • Rangwala, I., Sinsky, E. & Miller, J. R. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 8, 024040 (2013).

    ADS  Article  Google Scholar 

  • Wang Q. X., Fan, X. H. & Wang, M. B. Warming amplification with both altitude and latitude in the Tibetan Plateau. Int. J. Climatol. 1–18 (2021).

  • Su, J., Duan, A. & Xu, H. Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation: Tibetan Plateau warming amplification. Atmos. Sci. Lett. 18, 112–117 (2017).

    ADS  Article  Google Scholar 

  • Related Posts